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Abstract. The number of n-edge embedded graphs (rooted maps) on the g-torus grows
as tgn5(g−1)/212n when n tends to infinity. The constants tg can be computed via the
non-linear “tg-recurrence”, strongly related to the KP hierarchy and the double scaling
limit of the one-matrix model. The combinatorial meaning of this simple recurrence
is still mysterious, and the purpose of this work is to point out an interpretation via
random maps on surfaces. Namely, we show that the tg-recurrence is equivalent, via
combinatorial bijections, to the fact that EX2

g = 1
3 for any g ≥ 0, where Xg, 1− Xg are

the masses of the nearest-neighbour cells surrounding two randomly chosen points in
a Brownian map of genus g. This raises the question (that we leave open) of giving an
independent probabilistic or combinatorial derivation of this second moment, which
would lead to a fully concrete proof of the tg-recurrence. In fact, we conjecture that for
any g ≥ 0 and k ≥ 2, the masses of the k nearest-neighbour cells induced by k uniform
points in the genus g Brownian map form a uniform k-division of the unit interval. We
leave this question open even for (g, k) = (0, 2).

Résumé. Le nombre de graphes plongés à n arêtes (cartes enracinées) sur le g-tore
croît comme tgn5(g−1)/212n quand n → ∞. Les constantes tg peuvent être calculées
grâce àă la récurrence-tg, non linéaire, fortement liée à la hiérarchie KP et à la double
limit d’échelle du modèle à une matrice. Le sens combinatoire de cette récurrence
simple demeure mystérieux, et le but de ce travail est d’en fournir une interprétation
via les cartes aléatoires. À savoir, nous montrons que la récurrence-tg est équivalente,
via des bijections combinatoires, au fait que EX2

g = 1
3 pour tout g ≥ 0, où Xg, 1− Xg

sont les masses des cellules des plus proches voisins entourant deux points choisis au
hasard dans une carte brownienne de genre g. Cela soulève la question (que nous
laissons ouverte) de donner une dérivation probabiliste ou combinatoire indépendante
de ce second moment, ce qui conduirait À une démonstration concrète complète de
la récurrence-tg. En fait, on conjecture que pour tout g ≥ 0 et k ≥ 2, les masses
des k cellules des plus proches voisins induites par k points uniformes dans la carte
brownienne de genre g forment une k-division uniforme de l’intervale [0, 1]. On laisse
cette question ouverte même pour (g, k) = (0, 2).
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1 Introduction and results

In this note a map is a graph embedded without edge crossings on a closed oriented
surface, in such a way that the connected components of the complement of the graph,
called faces, are all homeomorphic to a disk. Loops and multiple edges are allowed, and
maps are considered up to oriented homeomorphisms. A map is rooted if one edge is
distinguished and oriented. The number mg(n) of rooted maps with n edges on the
surface of genus g satisfies, for fixed g ≥ 0 and n→ ∞:

mg(n) ∼ tgn
5(g−1)

2 12n, for tg > 0. (1.1)

In genus 0, this result follows from the exact formula m0(n) = 2·3n

(n+2)(n+1)(
2n
n ) due to

Tutte [19]. In higher genus, it was proved by Bender and Canfield in [1]. A direct
combinatorial interpretation of the genus 0 formula was given by Cori and Vauquelin [8]
and much simplified by Schaeffer [18, 7]. A combinatorial interpretation of (1.1) was
given in [6] using the Marcus-Schaeffer bijection [14] and further developed in [5].

None of the methods just mentioned enable us to say much about the sequence of
constants (tg)g≥0 that appear in (1.1), and indeed these references give explicit values
only for very small values of g. There is however a remarkable recurrence formula to
compute these numbers, that we call the tg-recurrence. It is better expressed in terms of

the numbers τg = 25g−2Γ
(

5g−1
2

)
tg and is given by:

τg+1 =
(5g + 1)(5g− 1)

3
τg +

1
2

g

∑
g1=1

τg1τg+1−g1 , g ≥ 0, (1.2)

which enables us to compute these numbers easily starting from τ0 = −1. This result
was first stated in mathematical physics in relation with the double scaling limit of the
one-matrix model, and obtained via a non-rigorous scaling of expressions involving or-
thogonal polynomials (we refer to [12, p201] for historical references). A more algebraic
approach is based on the fact that the partition function of maps on surfaces, with in-
finitely many parameters marking vertex degrees, is a tau-function of the KP hierarchy.
Going from the KP hierarchy to the recurrence (1.2) (or to an equivalent Painlevé-I ODE
for an associated generating function) relies on a trick of elimination of variables that
can be performed in different ways and whose generality is, as far as we know, yet to be
fully understood (for the case of triangulations see [11, Appendix B.] or [10, 2] and for
general maps see [4]).

The main observation of this note is to relate the recurrence (1.2) to another side
of the story, namely the study of random maps and their scaling limits. We refer to the
introductions of the papers [15, 16, 13] for an introduction to the topic and for references.
To state our main observation we first need a few more definitions. A quadrangulation
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is a map in which each face contains exactly four corners, i.e. is bordered by exactly
four edge-sides. It is bipartite if its vertices can be colored in black and white in such
a way that there is no monochromatic edge. For each n, g ≥ 0, there is a classical
bijection, due to Tutte, between rooted maps of genus g with n edges and rooted bipartite
quadrangulations of genus g with n faces.

For n, g ≥ 0, we let Q(g)
n be the set of rooted bipartite quadrangulations of genus g

with n faces (with the convention that there is a single quadrangulation with 0 faces,
which has genus 0, no edges, and two vertices). We let q(g)

n ∈u Q(g)
n be a bipartite

quadrangulation of genus g with n faces chosen uniformly at random. We equip the
vertex set of q(g)

n with the graph distance, noted dn, and with the uniform measure,
noted µn. This makes q(g)

n ≡ (q(g)
n , dn, µn) into a compact measured metric space. The set

of (isometry classes of) such spaces is equipped with the Gromov-Hausdorff-Prokhorov
(GHP) topology as in [15, Sec. 6]. A Brownian map of genus g is a random compact
measured metric space (q∞, d∞, µ∞) that is such that:

(q(g)
n , 1

n1/4 dn, µn) −→ (q(g)
∞ , d∞, µ∞),

in distribution along some subsequence for the GHP topology. The existence of Brown-
ian maps of genus g was proved in [15], and their uniqueness for each g ≥ 1 has been
announced by Bettinelli and Miermont [3] (in genus 0 the uniqueness is an important
result proved independently by Miermont [16] and Le Gall [13]). However the unique-
ness of the limit is not needed for our discussion since we will prove the convergence of
all the observables we are interested in.

Theorem 1 (First observation, obtained by combinatorial means). For g ≥ 0, let
(q(g)

∞ , d∞, µ∞) be a Brownian map of genus g. Let v1, v2 ∈ q(g)
∞ be chosen independently

according to the probability measure µ∞, and let Xg, 1− Xg be the masses of the corresponding

cells in the nearest neighbour tessellation of q(g)
∞ induced by v1 and v2, that is to say:

Xg := µ∞

({
x ∈ q(g)

∞ , d∞(x, v1) < d∞(x, v2)
})

.

Then the sequence of numbers τg = 25g−2Γ
(

5g−1
2

)
tg satisfies:

τg+1 = 2(5g + 1)(5g− 1)τg · E[Xg(1− Xg)] +
1
2

g

∑
g1=1

τg1τg+1−g1 , g ≥ 0.

From (1.2) we immediately deduce:

Theorem 2 (Second observation, by comparing Theorem 1 with the tg-recurrence (1.2)).
For any g ≥ 0, the random variable Xg satisfies

E[Xg(1− Xg)] =
1
6

, or equivalently EX2
g =

1
3

.



4 Guillaume Chapuy

The reader may be surprised that EX2
g does not depend on g ≥ 0: indeed, although it

is natural to expect that local statistics of Brownian maps do not depend on the genus, the
nearest-neighbour tessellation depends globally of the metric space q(g)

∞ , which is genus
dependent. This unexpected property suggests that there exists a simple probabilistic or
combinatorial interpretation of this mysterious fact, based on a symmetry of the Brown-
ian map, but we have not been able to find it. We emphasize that, via Theorem 1, such
an interpretation would provide a proof of the tg-recurrence independent of orthogonal
polynomials, matrix models or integrable hierarchies.

It is natural to ask if other moments of the variables Xg or related random variables
are computable, and in what way they depend on the genus. Unfortunately we will not
go very far in this direction. Let v1, v2, . . . , vk be k ≥ 2 points in q(g)

∞ chosen indepen-
dently at random according to the Lebesgue measure µ∞. Let (Y(i:k)

g )1≤i≤k be the masses
of the k-nearest-neighbour cells induced by the vi’s, i.e. for i ∈ [1..k] let

Y(i:k)
g := µ∞

({
x ∈ q(g)

∞ , ∀j ∈ [1..k] \ {i}, d∞(x, vi) < d∞(x, vj)
})

.

We note that Xg = Y(1:2)
g , but we prefer to keep the lighter notation Xg for Y(1:2)

g through-
out this note. The following result is similar to, and as mysterious as Theorem 2:

Theorem 3 (A similar simple formula for the case of three points). For g ≥ 0, the masses
Y(1:3)

g , Y(2:3)
g , Y(3:3)

g of the Voronoï cells induced by three independent Lebesgue distributed points
in the Brownian map of genus g satisfy, for g ≥ 0:

E[Y(1:3)
g Y(2:3)

g Y(3:3)
g ] =

1
60

.

As we will see, the fact that this moment is computable reflects the existence of a
combinatorial device known as the “trisection lemma” [5]. The fact that it does not de-
pend on the genus, and that it coincides2 with the corresponding moment for a uniform
three-division of the interval [0, 1], is as mysterious as for the previous result (or even
more, since the computations leading to Theorem 3 are quite delicate).

We won’t prove anything on higher moments or other values of k since we lack the
tools to study them. However, numerical simulations suggest the remarkable property:

Conjecture 4. For k ≥ 2, g ≥ 0, let q(g)
∞ ≡ (q(g)

∞ , d∞, µ∞) be a genus g Brownian map and let
v1, . . . , vk be chosen according to µ⊗k

∞ . Then the random vector (Y(1:k)
g , Y(2:k)

g , . . . , Y(k:k)
g ) has the

same law as the subdivision of the unit interval induced by k− 1 independent uniform variables.
In particular, for any g ≥ 0, Xg = Y(1:2)

g is uniform on [0, 1].

2If U1, U2 are two independent uniforms on [0, 1] and I1, I2, I3 are the lengths of the three intervals they
define, then E(I1 I2 I3) is the probability that five independent uniforms U1, U2, V1, V2, V3 are ordered as
V1 < U1 ∧U2 < V2 < U1 ∨U2 < V3, which is clearly equal to 2

5! =
1

60 .
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To conclude this introduction, we emphasize that our main observation relates the
moment EX2

g to the g-th step of the tg-recurrence. In particular, the fact that EX2
0 = 1/3

for the genus 0 Brownian map is only “equivalent” to the computation of the genus 1
constant t1, which can be performed by hand in several ways (and similarly, our proof of
Theorem 3 for g = 0 relies only on the value of the constants t1 and t2). However, proving
Conjecture 4 even for (g, k) = (0, 2) would be interesting in itself. Readers familiar with
Miermont’s bijection [15] may try to approach this problem by exact counting of well-
labelled 2-face maps (we have failed trying to do so). One could also hope that in
the future purely probabilistic methods (for example using the QLE viewpoint on the
Brownian map [17]) will enable to determine the full law of X0 or even the law of the
vector (Y(i:k)

0 )1≤i≤k for each k. In an opposite direction, we recall that the tg-recurrence
is only a “shadow” of the fact that the generating functions of maps satisfy a set of
infinitely many partial differential equations called the KP hierarchy. It is natural to
expect that other joint moments of the variables Y(i:k)

g , apart from the two cases we have
been able to track, are related to these equations. This may lead to a way, based on
integrable hierarchies, of approaching Conjecture 4.
On this extended abstract. This version is an extended abstract of a full paper available
at arXiv:1603.07714, to which we refer for full proofs. Here we skip most of the technical
probabilistic details related to convergence (replaced here by heuristic considerations)
and focus on the combinatorial techniques and on the path of proof which consists
mostly in a conjoint use of generating functions and combinatorial bijections.

2 Proof sketch of our main observation (Theorem 1)

2.1 Preliminaries

For g ≥ 0 we let Qg(z) be the generating function of rooted bipartite quadrangulations
of genus g by the number of faces, and we let Q•g(z) be the g.f. of the same objects where
an additional vertex is pointed. We let mg(n) = [zn]Qg(z) and we use the same notation
with •. In what follows the notation a(n) ∼ b(n) means (as usual) that a(n)/b(n) →
1 when n tends to infinity, while the notation F(z) ∼ G(z) means that both F and
G are algebraic functions of radius of convergence 1

12 , both have a unique dominant
singularity at z = 1

12 , and we have F(z) = G(z)(1 + o(1)) when z → 1
12 uniformly in a

neighbourhood of z = 1
12 slit along the line [ 1

12 , ∞).
From [1] (see also [6] for purely combinatorial proofs) we have for fixed g ≥ 0:

mg(n) ∼ tgn
5g−5

2 12n , m•g(n) = (n + 2− 2g)mg(n) ∼ tgn
5g−3

2 12n

Q•g(z) ∼ Γ(5g−1
2 )tg(1− 12z)

1−5g
2 = 22−5gτg(1− 12z)

1−5g
2 . (2.1)

https://arxiv.org/abs/1603.07714
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1 face
genus g1

1 face
genus g2

g1 + g2 = g + 1

1 face
genus g + 1

= +

2 faces, genus g
one marked corner in each face

root edge
F1

F2

c1

c2

`(c1)− `(c2) ∈ {−1, 0, 1}

Figure 1: Illustration of the decomposition leading to (2.3)

A labelled map of genus g is a rooted map M of genus g equipped with a function
` : V(M) → Z such that for any edge (u, v) of M one has `(u)− `(v) ∈ {−1, 0, 1}. We
consider these objects up to global translation of labels (one can fix a translation class
by fixing the label of some vertex to 0). A labelled one-face map (l.1.f.m.) is a labelled map
having only one face. We let L(g)

n be the set of (rooted) l.1.f.m. of genus g with n edges.
The Marcus-Schaeffer bijection ([14], see also [6]) is an explicit bijection from Q(g)•

n to
{↑, ↓} × L(g)

n , where Q(g)•
n is the set of rooted bipartite quadrangulations of genus g and

n faces equipped with a pointed vertex. It follows that Q•g(z) = 2Lg(z) where Lg(z) is the
generating function of rooted l.1.f.m. of genus g by the number of edges. Moreover, in
genus 0, rooted one-face maps are trees, and a standard root-edge decomposition leads
to the quadratic equation L0(z) = 1 + 3zL0(z)2, from which we get the explicit formula:

1− 6zL0(z) =
√

1− 12z. (2.2)

2.2 Decomposition equation, Miermont’s bijection, proof of Theorem 1

We now come to the substance of this work, which is simply to try to write an equation
for the generating function of l.1.f.m. by root-edge decomposition, and see what hap-
pens. We fix g ≥ 0, and we consider a l.1.f.m. M of genus g + 1. If we remove the root
edge of this map, two things can happen (see Figure 1):
(i) we disconnect the map into two l.1.f.m. M1 and M2 whose genera sum up to g + 1;

(ii) we do not disconnect the map; in this case we are left with a map M′ of genus g with
two faces. Each face of M′ carries a distinguished corner, and the labels of these two
corners differ by −1, 0, or 1.

Translating this operation into an equation for generating functions we obtain

Lg+1(z) = 3z ∑
g1+g2=g+1

g1,g2≥0

Lg1(z)Lg2(z) + zAg(z) (2.3)

where: - in the first term the factor 3z takes into account the choice of the increment
of label along the root-edge in {−1, 0, 1};
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- Ag(z) is the generating function by the number of edges, of unrooted labelled
two-face maps, with faces numbered F1, F2, such that the face Fi contains a
marked corner ci for i = 1..2, and that |`(c1)− `(c2)| ≤ 1.

Objects counted by Ag(z) can be related to quadrangulations thanks to Miermont’s bi-
jection [15]. This bijection is a generalization of the Marcus-Schaeffer bijection where the
l.1.f.m is replaced by a labelled map having an arbitrary number, say K, of faces. We will
apply it for K = 2. In the following discussion, where we assume some familiarity with
Miermont’s bijection, we will show how to arrive informally at Lemma 5 below, and
why this implies Theorem 1. As we said we will focus on key combinatorial features
and stay at the intuitive level for technical probabilistic facts.

Let us consider an object counted by [zn]Ag(z). Let us fix the translation class of the
labels by saying that the minimum label in face F1 is zero, and let us call δ the minimum
label in face F2. Let i1 ≥ 0 and i2 ≥ δ be the labels of the two marked corners c1 and c2,
respectively, and recall that i1 − i2 ∈ {−1, 0, 1}. Applying Miermont’s bijection [15] to
this object, we construct a bipartite quadrangulation Q of genus g by adding a new vertex
s1, s2 inside each face F1, F2, and applying a certain closure operation. At the end of the
construction, we obtain a quadrangulation such that d(s1, s2) + δ is even. Moreover, the
two corners c1 and c2 of the original two-face map are naturally associated to two edges
e1 and e2 of the quadrangulation, and the construction is such that if mi is the endpoint
of ei closer from si in Q, for i ∈ {1, 2} one has:

d(s1, m1) = i1 , d(s2, m2) = i2 − δ , d(s2, m1) ≥ i1 − δ , d(s1, m2) ≥ i2.

These constraints can simply be rewritten as:

d(s1, m1) ≤ d(s1, m2)− ε , d(s2, m2) ≤ d(s2, m1)− ε, (2.4)

where ε = i2 − i1 is such that |ε| ≤ 1. Loosely speaking, the properties in (2.4) say that,
up to an error at most 1, si is (weakly) closer to mi than to m3−i for i = 1..2. Unfortunately
these constraints do not entirely characterize these objects (see [15, Sec 2.2]) but they
do, in some sense, asymptotically3. Thinking heuristically for a moment, we can expect
that the analogue in the continuum limit of these discrete configurations is a Brownian
map with four marked points (m∞

1 , m∞
2 , s∞

1 , s∞
2 ) such that if we subdivide the space in

two nearest-neighbour cells induced by m∞
1 and m∞

2 , the point s∞
i belongs to the nearest-

neighbour cell induced by m∞
i for each i = 1..2. Up to technical details that we will carry

out in the next section, this leads us quite naturally to the following conclusion:

Lemma 5. The coefficient [zn]Ag(z) is such that, as n tends to ∞, with the notation of Theorem 1:

[zn]Ag(z)
3/2 · n3mg(n)

−→ E[Xg(1− Xg)] (2.5)

3Roughly speaking the only ambiguity comes from vertices where an equality is reached in (2.4), but
these are in negligible proportion with high probability.
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Remark 1. The reader can understand heuristically the meaning of the denominator 3/2 ·
n3mg(n) as follows. The tuple (Q, s1, s2, e1, e2) is a quadrangulation with two vertices and
two marked edges. We can use e1 as the root-edge of Q, and orient it by deciding that
its source is at even distance from s1. We can choose the “error” ε freely in {−1, 0, 1}
(since asymptotically we do not expect this error to play any role), and set i1 := d(s1, m1)
and δ := i1 + ε− d(s2, m2). Since Miermont’s bijection requires that d(s1, s2) + δ is even,
we are left with a rooted quadrangulation with one marked edge e2, and two marked
vertices (s1, s2) subject to two parity constraints (that s1 is at even distance from the root,
and that d(s1, s2) + δ is even). Since a quadrangulation with n faces has 2n edges and
n + 2− 2g vertices, and since it is natural to expect each parity constraint to contribute
an asymptotic factor 1

2 , the total number of “base configurations” we obtain is ∼ 3×
(2n)n2/4 ·mg(n), hence the denominator in (2.5).

We now conclude the proof of Theorem 1. The main idea is to express in two ways
the "unknown" series Ag(z) (at leading order). First, rewrite the decomposition (2.3) as:

(1− 6zL0(z))Lg+1(z)− 3z ∑
g1+g2=g+1,

g1,g2>0

Lg1(z)Lg2(z) = zAg(z), (2.6)

which expresses the generating function Lg+1(z) in terms of the lower genus functions
Li(z) for i = 1..g, and of the “unknown” quantity Ag(z). We recall that Q•g(z) = 2Lg(z)
and (2.1), from which we observe that each term in the left side of (2.6) has a dominant
singularity at z = 1

12 with the same order of magnitude. More precisely, for the first
term, using (2.2), we obtain (1− 6zL0(z))Lg+1(z) ∼ 21−5(g+1)τg+1(1− 12z)1− 5

2 (g+1). For

product terms we have Lg1(z)Lg2(z) ∼ 22−5(g+1)τg1τg2(1 − 12z)1− 5
2 (g1+g2). It follows,

using standard transfer theorems for algebraic functions [9] that when n tends to infinity:

[zn−1]Ag(z) ∼ 12nn
5g+1

2 21−5(g+1)Γ
(

5g+3
2

)−1 (
τg+1 − 1

2 ∑
g1+g2=g+1

g1,g2>0

τg1τg2

)
. (2.7)

But Lemma 5 gives another expansion of the “unknown” coefficient [zn−1]Ag(z), namely:

[zn−1]Ag(z) = EXg(1− Xg) · 3/2 · n3mg(n− 1) ∼ EXg(1− Xg) · 3 · 21−5gΓ( 5g−1
2 )−1τgn

5g+1
2 12n−1.

Theorem 1 follows by comparing the last two expansions of the “unknown” quantity
[zn−1]Ag(z).

3 Three marked points (proof of Theorem 3)

We will now use our remaining space to sketch the proof of Theorem 3. We will be even
quicker than in the previous section only giving an idea of why the third moment of
Theorem 3 shows up in the argument. We refer again to the arxiv version for full details.
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We first need some definitions from [6, 5]. If L is a one-face map, its skeleton is
the map obtained by removing all vertices of degree 1 in L, and continuing to do so
recursively until only vertices of degree at least 2 remain. Vertices of a one-face map
that are vertices of degree at least 3 of its skeleton are called nodes. A node v that has
degree k in the skeleton is called a k-node (note that its degree as a vertex in the one-face
map can be larger than k). A one-face map is dominant if all vertices of its skeleton have
degree at most 3, i.e. if all its nodes are 3-nodes. It is proved in [6] that for fixed g, as
n tends to infinity, a proportion at least 1−O(n−1/4) of l.1.f.m. of genus g with n edges
are dominant. By Euler’s formula, a dominant one-face map has 4g− 2 nodes.

Following [5], we introduce the operation of opening. If L is a one-face map and v is
a 3-node of L, the opening of v is the operation that consists in replacing v by three new
vertices, each linked to one edge of the skeleton, and distributing the three (possibly
empty) subtrees attached to v among these new vertices as in the following figure:

v
opening

Following [5], we distinguish two types of 3-nodes in a one-face map: intertwined nodes,
which are such that their opening results in a one-face map of genus g− 1 with three
marked vertices; and non-intertwined nodes, which are such that their opening results in
a map of genus g − 2 with three faces, and one marked vertex inside each face (here
the map can be disconnected, and its genus and number of faces are defined additively
on connected components). The trisection lemma [5, Lemma 5], which is the key result
underlying this section, asserts that any dominant map of genus g ≥ 1 has exactly 2g
intertwined nodes, hence 2g− 2 non-intertwined ones.

It follows that the number Kg+2(n) of l.1.f.m. of genus g + 2 with n edges whose root
edge is a skeleton-edge leaving a non-intertwined 3-node satisfies:

Kg+2(n) ∼
6(g + 1)

2n
[zn]Lg+2(z). (3.1)

Indeed, the first-order contribution is given by dominant l.1.f.m., and in a dominant
l.1.f.m. of genus g + 2 we can choose 3(2(g + 2)− 2) = 6(g + 1) edges outgoing from a
non-intertwined node as a new root edge, but we obtain each map 2n times in this way
(since maps counted by Lg+2(z) are already rooted at one of their 2n oriented edges).

We are now going to obtain another expression for the number Kg+2(n) by perform-
ing a combinatorial decomposition. Comparing the two will lead us to Theorem 3. Let
L be a dominant l.1.f.m of genus g + 2 whose root edge is a skeleton-edge leaving a
non-intertwined 3-node v. We distinguish three cases, according to what happens when
we perform the opening of the node v (see Figure 2):
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v

1 face

genus g1 1 face

genus g2

1 face

genus g3

case (i) case (ii)

1 face

genus g2

1 face, genus g1
rooted on a non-isthmic skeleton-edge

v

case (iii)

v

→

3 faces, genus g

one marked vertex in each face

`(v1) = `(v2) = `(v3)

v1 v2

v3

g1 + g2 + g3 = g + 2 g1 + g2 = g + 2
g1, g2 > 0g1, g2, g3 > 0

Figure 2: The three cases for a one-face map of genus g + 2 rooted at skeleton edge
leaving a non-intertwined 3-node v.

(i) we disconnect the map into three components;
(ii) we disconnect the map into two components;

(iii) we do not disconnect the map.
It should be no surprise to our experienced reader that the generating functions for

the first two cases (which we denote by C(i)
g+2(z) and C(ii)

g+2(z)) can be expressed in terms
of generating functions of maps rooted in several ways. Filling in the details, one easily
sees that the leading-order contribution for the sum of the first two cases is:

C(i)
g+2(z) + C(ii)

g+2(z) ∼ 2−5(g+2)+1

3 · ∑
g1+g2
=g+2

τg1τg2 − ∑
g1+g2+g3

=g+2

τg1τg2τg3

 · (1− 12z)
3
2− 5

2 (g+2)

(3.2)
where the sums are taken over positive indices (i.e. g1, g2, g3 > 0). Observe the cubic
convolution (triple sum), that naturally reflects the fact that the removal of the marked
node in case (i) disconnects the map into three components.

We now study case (iii) and for this, we apply again the Miermont’s bijection. If we
disconnect the three endpoints belonging to the skeleton and the root vertex in a map
from case (iii), we obtain a labelled map of genus g with three faces, with one marked
vertex inside each face, subject to the constraint that those three vertices have the same
label (see Figure 2-Right). Miermont’s bijection transforms this object into a bipartite
quadrangulation of genus g with six marked vertices (s1, s2, s3, v1, v2, v3), such that for
i = 1..3 the source vi is closer from the vertex si than from the two other vertices sj (to
see this, write precisely the inequalities analogue to (2.4) in previous section). As in the
previous section, up to subdominating cases, this property asymptotically characterizes
those configurations, and we get:
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Lemma 6. The number c(iii)g+2(n) of configurations in case (iii) satisfies:

c(iii)g+2(n)

n5/4 · 2−2mg(n)
∼ E[Y(1:3)

g Y(2:3)
g Y(3:3)

g ].

The reader can understand heuristically the denominator in the previous expression as
follows. The factor n5/4 comes from the fact that we have ∼ n6 ways to mark 6 vertices
(among n + 2− 2g) but the quadrangulation is unrooted so we divide by 4n. The factor
2−2 corresponds to the fact that we have two parity constraints relating the distances
of the six points together (these constraints enable us to choose the delays in such a
way that the target vertices get the same label while respecting the parity constraints
on delays required by Miermont’s bijection). Now that we have seen how to make the
quantity E[Y(1:3)

g Y(2:3)
g Y(3:3)

g ] appear, let us sketch the end of the proof.
Sketch of the path to the proof of Theorem 3. Summing contributions given by the

last lemma and by (3.2) enables us to obtain an expression of the leading order of the
sum of the three cases (i), (ii), (iii), therefore to obtain an alternative expression for the
quantity (3.1), at leading order. Comparing the two, we therefore obtain an expression of
E[Y(1:3)

g Y(2:3)
g Y(3:3)

g ] as a trilinear expression in the (th)h≤g+2. So far, we have not used the
tg-recurrence. We will do it now, and a miracle happens. By doing a suitable bootstrap
of the tg-recurrence, we can obtain a (complicated) trilinear relation satisfied by the
numbers (tg)g≥0. It turns out that this trilinear recurrence (which is equivalent to the tg-
recurrence) enables us to simplify considerably the obtained expression. Indeed, as was
the case in the previous section for the case of two points, the algebra works perfectly
and after simplifications, one obtains that E[Y(1:3)

g Y(2:3)
g Y(3:3)

g ] is in fact equal to 1/60. We
do not have any explanation for this remarkable simplification, and refer the reader to
the full version for details of the tedious computations.

Conclusion

We could be disappointed by the seemingly “magical” simplification that occurs at the
very end of the proof. Instead, we believe that the fact that computations match so well
is just a shadow of the deep links between combinatorial bijections, random maps, and
integrable hierarchies. Our results strongly suggest that a unified understanding of these
links is possible, although much remains to be done. We hope that Conjecture 4 can play
a stimulating role in this direction.
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